Sabtu, 26 Mei 2018

TAHAPAN DALAM MATEMATIKA



Disiplin utama dalam matematika didasarkan pada kebutuhan perhitungan dalam perdagangan, pengukuran tanah, dan pemprediksian peristiwa dalam astronomi. Ketiga kebutuhan ini secara umum berkaitan dengan ketiga pembagian umum bidang matematika: struktur, ruang, dan perubahan.

a) Pelajaran tentang struktur dimulai dengan bilangan. Pertama dan yang sangat umum adalah bilangan natural dan bilangan bulat berikut operasi arimetikanya, yang dijabarkan dalam aljabar dasar. Sifat bilangan bulat yang lebih mendalam dipelajari dalam teori bilangan.
b) Ilmu tentang ruang berawal dari geometri, yaitu geometri Euclid dan trigonometri dari ruang tiga dimensi (yang juga dapat diterapkan ke dimensi lainnya), kemudian belakangan juga digeneralisasi ke geometri Noneuclid yang memainkan peran sentral dalam teori relativitas umum. Bidang ilmu modern tentang geometri diferensial dan geometri aljabar menggeneralisasikan geometri ke beberapa arah: geometri diferensial menekankan pada konsep fungsi, buntelan, derivatif, smoothness, dan arah. Sementara itu, dalam geometri aljabar, objek-objek geometris digambarkan dalam bentuk sekumpulan persamaan polinomial.
c) Mengerti dan mendeskripsikan perubahan pada kuantitas yang dapat dihitung adalah suatu yang biasa dalam ilmu pengetahuan alam, dan kalkulus dibangun sebagai alat untuk tujauan tersebut. Konsep utama yang digunakan untuk menjelaskan perubahan variabel adalah fungsi. Banyak permasalahan yang berujung secara alamiah kepada hubungan antara kuantitas dan laju perubahannya, dan metoda untuk memecahkan masalah ini adalah topik dari persamaan differensial.
d) Untuk merepresentasikan kuantitas yang terus menerus digunakanlah bilangan riil. Di sisi lain, studi mendetail dari sifat-sifatnya dan sifat fungsi nilai riil dikenal sebagai analisis riil. Agar dapat menjelaskan dan menyelidiki dasar matematika, bidang teori pasti, logika matematika, dan teori model dikembangkan. Bidang-bidang penting dalam matematika terapan ialah statistik, yang menggunakan teori probabilitas sebagai alat dan memberikan deskripsi itu, analisis dan perkiraan fenomena dan digunakan dalam seluruh ilmu. Analisis bilangan menyelidiki teori yang secara tepat guna memecahkan bermacam masalah matematika secara bilangan pada komputer dan mengambil kekeliruan menyeluruh ke dalam laporan

Apa sebenarnya matematika itu? Pada saat berbicara tentang matematika, yang terbayang dalam pikiran kita selalu tentang “bilangan”, “angka”, “simbol-simbol”, atau “perhitungan”. Pakar yang sangat tertarik dengan perilaku bilangan, melihat matematika dari sudut bilangan. Pakar lain lebih mencurahkan perhatian kepada struktur-struktur, dengan melihat matematika dari sudut pandang struktur-strukturnya. Pakar lain lebih tertarik pada pola pikir atau sistematika, maka ia melihat matematika dari sudut pandang sistematikanya.
Adakah definisi tunggal matematika yang disepakati bersama? Berdasarkan uraian di atas, beberapa definisi atau ungkapan pengertian matematika hanya dikemukakan terutama berfokus pada sudut pandang pembuat definsi tersebut. Hal demikian dikemukakan dengan maksud agar pembaca dapat menangkap dengan mudah keseluruhan pandangan para ahli matematika. Dengan kata lain tidak terdapat satu definisi yang tunggal dan disepakati oleh semua tokoh atau pakar matematika.
Di bawah ini disajikan beberapa definisi atau pengertian tentang matematika.
  • Matematika adalah cabang ilmu pengetahuan yang eksak dan terorganisasi secara sistematik.
  • Matematika adalah pengetahuan tentang bilangan dan kalkulasinya.
  • Matematika adalah pengetahuan tentang penalaran logis dan berhubungan dengan bilangan.
  • Matematika adalah pengetahuan tentang fakta-fakta kuantitatif dan masalah tentang ruang dan bentuk.
  • Matematika adalah pengetahuan tentang struktur-struktur yang logis.
  • Matematika adalah pengetahuan tentang aturan-aturan yang ketat.
Dengan begitu banyak cabang matematika dan begitu luas lapangan garapnya, bagaimana kita dapat menggambarkan matematika secara sederhana? Jadi, bila kita harus menjawab pertanyaan matematika itu apa, maka kita hanya bisa mendeskripsikan beberapa sifatnya. Dengan cara begini pula para ahli telah mendeskripsikan matematika. Sebagian definisi begitu sederhana dan sebagian yang lain cukup kompleks, tetapi tidak ada deskripsi yang menjadi suatu definisi formal matematika. Apa saja sifat-sifat yang sering digunakan para ahli untuk mendeskripsikan matematika? Pada topik berikutnya kita akan membahas sifat atau karakteristik tersebut beserta implikasinya pada pembelajaran matematika.

0 komentar:

Posting Komentar

TERIMAKASIH ATAS KUNJUNGANNYA

SAMISANOV Menjelajah Negeri